INTEGRATION OF ARTIFICIAL INTELLIGENCE INTO STEM EDUCATION FOR PREDICTING STUDENT PERFORMANCE AND ANALYZING ETHICAL CHALLENGES

Authors

DOI:

https://doi.org/10.32782/2412-9208-2025-3-392-402

Keywords:

STEM education, artificial intelligence, learning analytics, programming, Arduino, academic performance, ethical challenges

Abstract

The article is devoted to the challenges of integrating artificial intelligence (AI) into STEM education, particularly in the context of the courses “Fundamentals of Robotics” and “STEM Education and Robotics” for students of Berdyansk State Pedagogical University, as well as to methods of addressing these challenges through modern technologies. The current state of AI development in education is examined, with a focus on learning analytics, which enables the prediction of students’ academic performance based on data from learning management systems such as Moodle. The components of the courses are discussed, including programming Arduino microcontrollers to control potentiometers, photoresistors, servomotors, RGB LEDs, ultrasonic sensors, and membrane keyboards, as well as ethical challenges related to AI use, particularly regarding data privacy and academic integrity. Based on the analysis, the problem of insufficient use of AI for performance prediction in robotics courses and the lack of ethical standards in Ukrainian education is identified, highlighting the need to improve the quality of student training through the implementation of modern learning analytics methods and harmonization with European standards. The object of the study is defined as the professional training of future computer science teachers in STEM education, and its purpose is to develop a model for integrating AI to predict academic performance and analyze ethical challenges. A set of research tasks, a general hypothesis, and several partial hypotheses are formulated. The general hypothesis states that the developed model of AI integration into STEM education will be effective if qualitative changes are achieved in students’ knowledge of learning analytics and Arduino programming principles; if conditions are created for students’ self-realization through practical laboratory work; and if the course content emphasizes mastering the skills of using AI for data analysis and forecasting. It is proven that students should have the opportunity to receive a comprehensive education that includes theoretical training in programming fundamentals, electronics, and AI ethics, as well as practical skills in working with Arduino microcontrollers. The use of LMS data to predict the academic performance of 62 second-year students of the Faculty of Physics, Mathematics, Computer Science, and Technology Education is described, including login frequency, task completion time, and the number of completed laboratory assignments. The results of prediction using linear regression and clustering are presented, which made it possible to identify students at risk of failure and adapt the educational process. Ethical challenges such as data protection and plagiarism prevention are outlined, and recommendations are proposed for harmonizing Ukrainian practices with European standards. The problem for further research is formulated as the need to improve AI models for complex programming tasks and to develop ethical standards for their use in education.

References

Алєксєєва Г. М., Бабич П. М. Використання платформи ARDUINO для професійної підготовки майбутніх інженерів-педагогів. Суми : Сумський державний педагогічний університет імені А. С. Макаренка, Фізико-математичний факультет. Фізико-математична освіта : науковий журнал2018. . Вип. 4 (14). С. 12–17. DOI: https://doi.org/10.31110/2413-1571-2018-018-4-002

Вишняченко С. А., Сальник І. В. Аналіз розвитку STEM-освіти у світі та в Україні. Наукові записки молодих учених. 2024. № 13. С. 1–10.

Гайда В. Я. Інноваційні засоби реалізації STEM-навчання. Наукові записки. Серія: Педагогічні науки. 2024. № 215. С. 127–131.

Інноваційні педагогічні технології в цифровій школі : матеріали VI Міжнародної науково-практичної конференції молодих учених (м. Харків, 15–16 травня 2024 року) / упор. Н. Пономарьова, Н. Олефіренко, В. Андрієвська. Харків, 2024. 516 с.

Крамар С. С. Методика розвитку компетентності з робототехніки вчителів інформатики в умовах неформальної освіти : дис. … д-ра філософії : 011 Освітні, педагогічні науки / наук. кер. М. П. Шишкіна. Київ, 2025. 240 с.

Кузьменко Г. М., Рижкова Т. Ю. Робототехніка у розвивальному навчанні студентів фізики як технологія реалізації STEM-освіти. Імідж сучасного педагога. 2024. № 4 (217). С. 13–18.

Титаренко В., Нагорна Н. STEM-технології як інструмент адаптивної підготовки здобувачів вищої освіти до викликів інноваційного суспільства. Adaptive Management: Theory and Practice. Series Pedagogics. 2025. Т. 20. № 39.

Bommarito J., Bommarito M., Katz D. M., Katz J. GPT as Knowledge Worker: A Zero-Shot Evaluation of (AI) CPA Capabilities. arXiv preprint arXiv:2301.04408. 2023.

Bowman E. A college student created an app that can tell whether AI wrote an essay. NPR Technology. 2023. January 9. URL: https://www.npr.org/2023/01/09/1147549845/gptzero-ai-chatgpt-edward-tian-plagiarism (дата звернення: 28.08.2025).

Finnie-Ansley J., Denny P., Luxton-Reilly A., Santos E. A., Prather J., Becker B. A. My AI Wants to Know if This Will Be on the Exam: Testing OpenAI’s Codex on CS2 Programming Exercises. Proceedings of the 25th Australasian Computing Education Conference. 2023. С. 97–104.

Hryn O., Keda M., Shara L. EU Legislation on the Use of Artificial Intelligence: Challenges for Ukraine in the Educational Space. European congress of scientific discovery. Proceedings of the 2nd International scientific and practical conference. 2025. С. 187–192.

Jang Y., Choi S., Kim H. Development and validation of an instrument to measure undergraduate students’ attitudes toward the ethics of artificial intelligence (AT-EAI) and analysis of its difference by gender and experience of AI education. Education and Information Technologies. 2022. Vol. 27. С. 11635–11667. DOI: https://doi.org/10.1007/s10639-022-11086-5

Jo Il-Hyun, Park Yeonjeong, Kim Jeonghyun, Song Jongwoo. Educational Technology International. Analysis of Online Behavior and Prediction of Learning Performance in Blended Learning Environments. 2014. Vol. 15. С. 137–153.

Lavrik V., Cortez L., Alekseeva A., García G. T., Juarez P. G., Poblano J. Development of the CAD system for designing non-standard constructions from elastomers. Development. 2014. Vol. 3. № 3. С. 10717–10726.

Lu O. H. T., Huang A. Y. Q., Lin A. J. Q., Ogata H., Yang S. J. H. Applying Learning Analytics for the Early Prediction of Students’ Academic Performance in Blended Learning. Educational Technology & Society. 2018. Vol. 21. № 2. С. 220–232.

Olumba G. C., Monday H. N., Nneji G. U., David G. M., Olumba W. C., Nneji R. I., Umana E. S., Agbonifo D. Bridging Educational Insights with Public Policy: Leveraging Predictive Analytics and Explainable AI for Student Academic Performance Outcomes Using PolySHAP. World Scientific News. 2025. № 205. С. 17–28.

Ouyang F., Wu M., Zheng L. Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course. International Journal of Educational Technology in Higher Education. 2023. Vol. 20. № 4. DOI: https://doi.org/10.1186/s41239-022-00372-4

Shayan P., Zaanen M. Predicting Student Performance from Their Behavior in Learning Management Systems. International Journal of Information and Education Technology. 2019. Vol. 9. С. 337–341. DOI: 10.18178/ijiet.2019.9.5.1223.

Wong B. T. Learning analytics in higher education: an analysis of case studies. Asian Association of Open Universities Journal. 2017. Vol. 12. С. 21–40.

Published

2025-12-29

Issue

Section

INFORMATION AND COMMUNICATION TECHNOLOGIES IN EDUCATION